Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Nat Genet ; 55(3): 389-398, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823319

RESUMO

Interacting proteins tend to have similar functions, influencing the same organismal traits. Interaction networks can be used to expand the list of candidate trait-associated genes from genome-wide association studies. Here, we performed network-based expansion of trait-associated genes for 1,002 human traits showing that this recovers known disease genes or drug targets. The similarity of network expansion scores identifies groups of traits likely to share an underlying genetic and biological process. We identified 73 pleiotropic gene modules linked to multiple traits, enriched in genes involved in processes such as protein ubiquitination and RNA processing. In contrast to gene deletion studies, pleiotropy as defined here captures specifically multicellular-related processes. We show examples of modules linked to human diseases enriched in genes with known pathogenic variants that can be used to map targets of approved drugs for repurposing. Finally, we illustrate the use of network expansion scores to study genes at inflammatory bowel disease genome-wide association study loci, and implicate inflammatory bowel disease-relevant genes with strong functional and genetic support.


Assuntos
Biologia Celular , Células , Doença , Estudos de Associação Genética , Pleiotropia Genética , Estudos de Associação Genética/métodos , Humanos , Ubiquitinação/genética , Processamento Pós-Transcricional do RNA/genética , Células/metabolismo , Células/patologia , Reposicionamento de Medicamentos/métodos , Reposicionamento de Medicamentos/tendências , Doença/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Doenças Autoimunes/genética , Doenças Autoimunes/patologia
3.
Nat Cell Biol ; 23(11): 1129-1135, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750578

RESUMO

Massive single-cell profiling efforts have accelerated our discovery of the cellular composition of the human body while at the same time raising the need to formalize this new knowledge. Here, we discuss current efforts to harmonize and integrate different sources of annotations of cell types and states into a reference cell ontology. We illustrate with examples how a unified ontology can consolidate and advance our understanding of cell types across scientific communities and biological domains.


Assuntos
Atlas como Assunto , Biologia Celular , Linhagem da Célula , Células/classificação , Análise de Célula Única , Ontologias Biológicas , Biomarcadores/metabolismo , Células/metabolismo , Células/patologia , Mineração de Dados , Doença , Ontologia Genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Integração de Sistemas , Transcriptoma
4.
Nat Cell Biol ; 23(11): 1117-1128, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750582

RESUMO

The Human Reference Atlas (HRA) aims to map all of the cells of the human body to advance biomedical research and clinical practice. This Perspective presents collaborative work by members of 16 international consortia on two essential and interlinked parts of the HRA: (1) three-dimensional representations of anatomy that are linked to (2) tables that name and interlink major anatomical structures, cell types, plus biomarkers (ASCT+B). We discuss four examples that demonstrate the practical utility of the HRA.


Assuntos
Atlas como Assunto , Biologia Celular , Linhagem da Célula , Células/classificação , Análise de Célula Única , Biomarcadores/metabolismo , Células/metabolismo , Células/patologia , Gráficos por Computador , Doença , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Transcriptoma
5.
Nature ; 594(7862): 201-206, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108694

RESUMO

The performance of light microscopes is limited by the stochastic nature of light, which exists in discrete packets of energy known as photons. Randomness in the times that photons are detected introduces shot noise, which fundamentally constrains sensitivity, resolution and speed1. Although the long-established solution to this problem is to increase the intensity of the illumination light, this is not always possible when investigating living systems, because bright lasers can severely disturb biological processes2-4. Theory predicts that biological imaging may be improved without increasing light intensity by using quantum photon correlations1,5. Here we experimentally show that quantum correlations allow a signal-to-noise ratio beyond the photodamage limit of conventional microscopy. Our microscope is a coherent Raman microscope that offers subwavelength resolution and incorporates bright quantum correlated illumination. The correlations allow imaging of molecular bonds within a cell with a 35 per cent improved signal-to-noise ratio compared with conventional microscopy, corresponding to a 14 per cent improvement in concentration sensitivity. This enables the observation of biological structures that would not otherwise be resolved. Coherent Raman microscopes allow highly selective biomolecular fingerprinting in unlabelled specimens6,7, but photodamage is a major roadblock for many applications8,9. By showing that the photodamage limit can be overcome, our work will enable order-of-magnitude improvements in the signal-to-noise ratio and the imaging speed.


Assuntos
Lasers , Iluminação , Microscopia/métodos , Fótons , Teoria Quântica , Análise Espectral Raman , Células/patologia , Células/efeitos da radiação , Lasers/efeitos adversos , Iluminação/efeitos adversos , Microscopia/instrumentação , Fótons/efeitos adversos , Razão Sinal-Ruído , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos
6.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33670011

RESUMO

Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain "hot" or "immune-sensitive" tumors become "cold" or "immune-resistant", with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.


Assuntos
Células/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Humanos , Imunidade , Microbiota , Neoplasias/genética , Neoplasias/microbiologia , Microambiente Tumoral/imunologia , Efeito Warburg em Oncologia
7.
Sci Rep ; 11(1): 5950, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723274

RESUMO

Cells interpret cues from and interact with fibrous microenvironments through the body based on the mechanics and organization of these environments and the phenotypic state of the cell. This in turn regulates mechanoactive pathways, such as the localization of mechanosensitive factors. Here, we leverage the microscale heterogeneity inherent to engineered fiber microenvironments to produce a large morphologic data set, across multiple cells types, while simultaneously measuring mechanobiological response (YAP/TAZ nuclear localization) at the single cell level. This dataset describing a large dynamic range of cell morphologies and responses was coupled with a machine learning approach to predict the mechanobiological state of individual cells from multiple lineages. We also noted that certain cells (e.g., invasive cancer cells) or biochemical perturbations (e.g., modulating contractility) can limit the predictability of cells in a universal context. Leveraging this finding, we developed further models that incorporate biochemical cues for single cell prediction or identify individual cells that do not follow the established rules. The models developed here provide a tool for connecting cell morphology and signaling, incorporating biochemical cues in predictive models, and identifying aberrant cell behavior at the single cell level.


Assuntos
Fenômenos Fisiológicos Celulares , Células/citologia , Microambiente Celular , Mecanotransdução Celular , Modelos Biológicos , Algoritmos , Animais , Linhagem Celular Tumoral , Núcleo Celular , Células/patologia , Fibroblastos , Humanos , Camundongos , Redes Neurais de Computação , Microambiente Tumoral
8.
Cell Biol Int ; 45(3): 498-506, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31855304

RESUMO

Mucopolysaccharidoses (MPS) are a group of genetic disorders belonging to lysosomal storage diseases. They are caused by genetic defects leading to a lack or severe deficiency of activity of one of lysosomal hydrolases involved in degradation of glycosaminoglycans (GAGs). Partially degraded GAGs accumulate in lysosomes, which results in dysfunctions of cells, tissues, and organs. Until recently, it was assumed that GAG accumulation in cells is the major, if not the only, mechanism of pathogenesis in MPS, as GAGs may be a physical ballast for lysosomes causing inefficiency of cells due to a large amount of a stored material. However, recent reports suggest that in MPS cells there are changes in many different processes, which might be even more important for pathogenesis than lysosomal accumulation of GAGs per se. Moreover, there are many recently published results indicating that lysosomes not only are responsible for degradation of various macromolecules, but also play crucial roles in the regulation of cellular metabolism. Therefore, it appears plausible that previous failures in treatment of MPS (i.e., possibility to correct only some symptoms and slowing down of the disease rather than fully effective management of MPS) might be caused by underestimation of changes in cellular processes and concentration solely on decreasing GAG levels in cells.


Assuntos
Células/patologia , Mucopolissacaridoses/patologia , Animais , Apoptose , Autofagia , Humanos , Mitocôndrias/metabolismo , Modelos Genéticos , Mucopolissacaridoses/genética
9.
Cell Biol Int ; 45(3): 481-497, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31908104

RESUMO

This review is dedicated to the role of nitration of proteins by tyrosine residues in physiological and pathological conditions. First of all, we analyze the biochemical evidence of peroxynitrite formation and reactions that lead to its formation, types of posttranslational modifications (PTMs) induced by reactive nitrogen species, as well as three biological pathways of tyrosine nitration. Then, we describe two possible mechanisms of protein nitration that are involved in intracellular signal transduction, as well as its interconnection with phosphorylation/dephosphorylation of tyrosine. Next part of the review is dedicated to the role of proteins nitration in different pathological conditions. In this section, special attention is devoted to the role of nitration in changes of functional properties of actin-protein that undergoes PTMs both in normal and pathological conditions. Overall, this review is devoted to the main features of protein nitration by tyrosine residue and the role of this process in intracellular signal transduction in basal and pathological conditions.


Assuntos
Células/metabolismo , Transdução de Sinais , Tirosina/metabolismo , Animais , Células/patologia , Humanos , Óxido Nítrico/metabolismo , Nitrosação , Processamento de Proteína Pós-Traducional
10.
Cell Calcium ; 93: 102321, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310302

RESUMO

Mitochondria are autonomous and dynamic cellular organelles orchestrating a diverse range of cellular activities. Numerous cell-signaling pathways target these organelles and Ca2+ is one of the most significant. Mitochondria are able to rapidly and transiently take up Ca2+, thanks to the mitochondrial Ca2+ uniporter complex, as well as to extrude it through the Na+/Ca2+ and H+/Ca2+ exchangers. The transient accumulation of Ca2+ in the mitochondrial matrix impacts on mitochondrial functions and cell pathophysiology. Here we summarize the role of mitochondrial Ca2+ signaling in both physiological (yang) and pathological (yin) processes and the methods that can be used to investigate mitochondrial Ca2+ homeostasis. As an example of the pivotal role of mitochondria in pathology, we described the state of the art of mitochondrial Ca2+ alterations in different pathological conditions, with a special focus on Alzheimer's disease.


Assuntos
Sinalização do Cálcio , Células/metabolismo , Células/patologia , Mitocôndrias/metabolismo , Yin-Yang , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Homeostase , Humanos
11.
Dis Model Mech ; 13(10)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33174531

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of muscular dystrophy and presents with weakness of the facial, scapular and humeral muscles, which frequently progresses to the lower limbs and truncal areas, causing profound disability. Myopathy results from epigenetic de-repression of the D4Z4 microsatellite repeat array on chromosome 4, which allows misexpression of the developmentally regulated DUX4 gene. DUX4 is toxic when misexpressed in skeletal muscle and disrupts several cellular pathways, including myogenic differentiation and fusion, which likely underpins pathology. DUX4 and the D4Z4 array are strongly conserved only in primates, making FSHD modeling in non-primate animals difficult. Additionally, its cytotoxicity and unusual mosaic expression pattern further complicate the generation of in vitro and in vivo models of FSHD. However, the pressing need to develop systems to test therapeutic approaches has led to the creation of multiple engineered FSHD models. Owing to the complex genetic, epigenetic and molecular factors underlying FSHD, it is difficult to engineer a system that accurately recapitulates every aspect of the human disease. Nevertheless, the past several years have seen the development of many new disease models, each with their own associated strengths that emphasize different aspects of the disease. Here, we review the wide range of FSHD models, including several in vitro cellular models, and an array of transgenic and xenograft in vivo models, with particular attention to newly developed systems and how they are being used to deepen our understanding of FSHD pathology and to test the efficacy of drug candidates.


Assuntos
Células/patologia , Modelos Biológicos , Distrofia Muscular Facioescapuloumeral/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Xenoenxertos , Humanos , Distrofia Muscular Facioescapuloumeral/genética
12.
Sci Rep ; 10(1): 12009, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686715

RESUMO

The dynamic response of cells when subjected to mechanical impact has become increasingly relevant for accurate assessment of potential blunt injuries and elucidating underlying injury mechanisms. When exposed to mechanical impact, a biological system such as the human skin, brain, or liver is rapidly accelerated, which could result in blunt injuries. For this reason, an acceleration of greater than > 150 g is the most commonly used criteria for head injury. To understand the main mechanism(s) of blunt injury under such extreme dynamic threats, we have developed an innovative experimental method that applies a well-characterized and -controlled mechanical impact to live cells cultured in a custom-built in vitro setup compatible with live cell microscopy. Our studies using fibroblast cells as a model indicate that input acceleration ([Formula: see text]) alone, even when it is much greater than the typical injury criteria, e.g., [Formula: see text] g, does not result in cell damage. On the contrary, we have observed a material-dependent critical pressure value above which a sudden decrease in cell population and cell membrane damage have been observed. We have unambiguously shown that (1) this critical pressure is associated with the onset of cavitation bubbles in a cell culture chamber and (2) the dynamics of cavitation bubbles in the chamber induces localized compressive/tensile pressure cycles, with an amplitude that is considerably greater than the acceleration-induced pressure, to cells. More importantly, the rate of pressure change with time for cavitation-induced pressure is significantly faster (more than ten times) than acceleration-induced pressure. Our in vitro study on the dynamic response of biological systems due to mechanical impact is a crucial step towards understanding potential mechanism(s) of blunt injury and implementing novel therapeutic strategies post-trauma.


Assuntos
Células/patologia , Estresse Mecânico , Aceleração , Células Cultivadas , Fibroblastos/metabolismo , Fluorescência , Humanos , Pressão , Ferimentos não Penetrantes/patologia
14.
Technol Health Care ; 28(S1): 401-410, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32364173

RESUMO

BACKGROUND: Microscopic image analysis based on image processing is required for quantitative evaluation of decellularization. Existing methods are not widely used because of expensive commercial software, and machine learning-based techniques lack generality for decellularization because many high-resolution image data has to be processed. OBJECTIVE: In this study, we developed an image processing algorithm for quantitative analysis of tissues and cells in a general microscopic image. METHODS: The proposed method extracts the color images obtained by the microscope into reference images consisting of grayscale, red (R), green (G), and blue (B) information and transforms each into a binary image. The transformed images were extracted by separating the cells and tissues through outlier noise elimination, logical multiplication and labeling. In order to verify the method, decellularization of porcine arotic valve was performed by the electrical method. Slice samples were obtained by time and the proposed method was applied. RESULTS: The experimental results show that the segmentation of cells and tissues, and quantitative analysis of the number of cells and changes in tissue area during the decellularization process was possible. CONCLUSIONS: The proposed method shows that cell and tissue extraction and quantitative numerical analysis were possible in different brightness of microscopic images.


Assuntos
Algoritmos , Valva Aórtica/patologia , Células/patologia , Cor , Processamento de Imagem Assistida por Computador/métodos , Animais , Reconhecimento Automatizado de Padrão/métodos , Suínos
15.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429092

RESUMO

E-cigarettes have a liquid that may contain flavors, solvents, and nicotine. Heating this liquid generates an aerosol that is inhaled into the lungs in a process commonly referred to as vaping. E-cigarette devices can also contain cannabis-based products including tetrahydrocannabinol (THC), the psychoactive component of cannabis (marijuana). E-cigarette use has rapidly increased among current and former smokers as well as youth who have never smoked. The long-term health effects are unknown, and emerging preclinical and clinical studies suggest that e-cigarettes may not be harmless and can cause cellular alterations analogous to traditional tobacco smoke. Here, we review the historical context and the components of e-cigarettes and discuss toxicological similarities and differences between cigarette smoke and e-cigarette aerosol, with specific reference to adverse respiratory outcomes. Finally, we outline possible clinical disorders associated with vaping on pulmonary health and the recent escalation of acute lung injuries, which led to the declaration of the vaping product use-associated lung injury (EVALI) outbreak. It is clear there is much about vaping that is not understood. Consequently, until more is known about the health effects of vaping, individual factors that need to be taken into consideration include age, current and prior use of combustible tobacco products, and whether the user has preexisting lung conditions such as asthma and chronic obstructive pulmonary disease (COPD).


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/patologia , Vaping/efeitos adversos , Células/patologia , Fumar Cigarros/efeitos adversos , Humanos , Pneumopatias/etiologia
16.
Br J Radiol ; 93(1111): 20200034, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32374626

RESUMO

Necrosis plays vital roles in living organisms which is related closely with various diseases. Non-invasively necrotic imaging can be of great values in clinical decision-making, evaluation of individualized treatment responses, and prediction of patient prognosis. This narrative review will demonstrate how the evolution of quinones for necrotic imaging has been promoted by searching for their active centers. In this review, we summarized the recent developments of various quinones with the continuous simplified π-conjugated cores in necrotic imaging and speculated their possible molecular mechanisms might be attributed to their intercalations with exposed DNA in necrotic tissues. We discussed their clinical challenges of necrotic imaging with quinones and their future translation studies deserved to be explored in personalized patient treatment.


Assuntos
Sondas Moleculares , Infarto do Miocárdio/patologia , Necrose/diagnóstico por imagem , Quinonas , Animais , Antraquinonas/química , Células/patologia , DNA/análise , Humanos , Sondas Moleculares/química , Infarto do Miocárdio/diagnóstico por imagem , Naftoquinonas/química , Quinonas/química , Quinonas/classificação , Ratos
17.
Cells ; 9(3)2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245147

RESUMO

Our common knowledge on oxidative stress has evolved substantially over the years, being focused mostly on the fundamental chemical reactions and the most relevant chemical species involved in human pathophysiology of oxidative stress-associated diseases. Thus, reactive oxygen species and reactive nitrogen species (ROS and RNS) were identified as key players in initiating, mediating, and regulating the cellular and biochemical complexity of oxidative stress either as physiological (acting pro-hormetic) or as pathogenic (causing destructive vicious circles) processes. The papers published in this particular Special Issue of Cells show an impressive range on the pathophysiological relevance of ROS and RNS, including the relevance of second messengers of free radicals like 4-hydroxynonenal, allowing us to assume that the future will reveal even more detailed mechanisms of their positive and negative effects that might improve the monitoring of major modern diseases, and aid the development of advanced integrative biomedical treatments.


Assuntos
Células/metabolismo , Células/patologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Peroxidação de Lipídeos , Estresse Oxidativo , Receptores Toll-Like/metabolismo
18.
Appl Microbiol Biotechnol ; 104(9): 3947-3957, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32179948

RESUMO

A sensing methodology that combines Au, tobacco mosaic virus (TMV), and folic acid for selective, sensitive, and colorimetric detection of tumor cells based on the peroxidase-like activity was reported in this study. Gold nanowires with a high aspect ratio were synthesized using TMV as a template. Au@TMV nanowire (AT) complex was obtained with diameter of 4 nm and length between 200 and 300 nm. In addition, since TMV was biocompatible and had many amino and carboxyl groups on its surface, AT was conjugated by folate to form a folic acid (FA)-conjugated AT composite (ATF) and tested by FTIR measurements. Furthermore, the peroxidase-like properties were studied and the optimal conditions for mimic enzyme activity were optimized. Finally, HeLa and other tumor cells expressed excessive receptors of folate on the surface, which can specifically bind to folic acid. As the specific binding of ATF with HeLa cells, the peroxidase properties of ATF were used for detection of cancer cells (Scheme 1). The cancer cells were detected not only qualitatively but also quantitatively. In this study, as low as 2000 cancer cells/mL could be detected using the current method.


Assuntos
Técnicas Biossensoriais , Ouro/química , Nanofios/química , Neoplasias/diagnóstico , Peroxidases/metabolismo , Animais , Células/efeitos dos fármacos , Células/patologia , Ácido Fólico/metabolismo , Células HEK293 , Células HeLa , Humanos , Cinética , Camundongos , Células NIH 3T3 , Oxirredução , Vírus do Mosaico do Tabaco/metabolismo
19.
Cell Death Differ ; 27(3): 887-902, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31969691

RESUMO

Autophagy, a main intracellular catabolic process, is induced in response to a variety of cellular stresses to promptly degrade harmful agents and to coordinate the activity of prosurvival and prodeath processes in order to determine the fate of the injured cells. While the main components of the autophagy machinery are well characterized, the molecular mechanisms that confer selectivity to this process both in terms of stress detection and cargo engulfment have only been partly elucidated. Here, we discuss the emerging role played by the E3 ubiquitin ligases of the TRIM family in regulating autophagy in physiological and pathological conditions, such as inflammation, infection, tumorigenesis, and muscle atrophy. TRIM proteins employ different strategies to regulate the activity of the core autophagy machinery, acting either as scaffold proteins or via ubiquitin-mediated mechanisms. Moreover, they confer high selectivity to the autophagy-mediated degradation as described for the innate immune response, where TRIM proteins mediate both the engulfment of pathogens within autophagosomes and modulate the immune response by controlling the stability of signaling regulators. Importantly, the elucidation of the molecular mechanisms underlying the regulation of autophagy by TRIMs is providing important insights into how selective types of autophagy are altered under pathological conditions, as recently shown in cancer and muscular dystrophy.


Assuntos
Autofagia , Células/patologia , Imunidade Inata , Proteínas com Motivo Tripartido/metabolismo , Animais , Humanos , Modelos Biológicos , Transdução de Sinais
20.
Annu Rev Biophys ; 49: 1-18, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31913665

RESUMO

The epithelial-mesenchymal transition (EMT) is a process by which cells lose epithelial traits, such as cell-cell adhesion and apico-basal polarity, and acquire migratory and invasive traits. EMT is crucial to embryonic development and wound healing. Misregulated EMT has been implicated in processes associated with cancer aggressiveness, including metastasis. Recent experimental advances such as single-cell analysis and temporal phenotypic characterization have established that EMT is a multistable process wherein cells exhibit and switch among multiple phenotypic states. This is in contrast to the classical perception of EMT as leading to a binary choice. Mathematical modeling has been at the forefront of this transformation for the field, not only providing a conceptual framework to integrate and analyze experimental data, but also making testable predictions. In this article, we review the key features and characteristics of EMT dynamics, with a focus on the mathematical modeling approaches that have been instrumental to obtaining various useful insights.


Assuntos
Fenômenos Biofísicos , Células/citologia , Transição Epitelial-Mesenquimal , Células/patologia , Humanos , Metástase Neoplásica , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...